scientist labs

scientist labs

Wu Fan's Research Group

National Distinguished Expert; Member of the CAS Hundred Talents Program; Outstanding Young Scientist of Jiangsu Province; Professor of University of Chinese Academy of Sciences; Doctoral Supervisor at the Institute of Physics, CAS; Director of the Scientist Lab Management Department, IOPLY; Chief Scientist of TIES

Established on the Institute of Physics, Academia Sinica founded in 1928 and the Institute of Physics, National Academy of Peiping founded in 1929, the Institute of Physics (IOP), Chinese Academy of Sciences (CAS) is a comprehensive multidisciplinary research organization with a significant influence in the domestic and international physics communities. It is mainly engaged in research on condensed matter physics, with research interests covering condensed matter physics, optical physics, atomic and molecular physics, plasma physics, soft matter and biological physics, condensed matter theories, computational physics and clean energy. IOP's Nanoionics and Energy Materials Research Group has been researching secondary batteries for 40 years. In 1996, the research group became the pioneer of Chinese research on the industrialization of lithium-ion batteries. Meanwhile, it chaired and conducted many key projects supported by CAS and the Ministry of Science and Technology of the People’s Republic of China. In 2018, the Yangtze River Delta Physics Research Center of the Institute of Physics, Chinese Academy of Sciences (hereinafter referred to as IOPLY) was jointly established by IOP and the People's Government of Liyang City, Jiangsu Province. Making the transfer and transformation of scientific and technological achievements and cutting-edge technology R&D the main targets, IOPLY is dedicated to meeting the demand of enterprises in East China for key technologies in energy, IT, sophisticated instruments, and intelligent equipment. It will also build itself into a world-renowned science and technology innovation and academic exchange base.

Wu Fan, a distinguished researcher from IOP, has settled in IOPLY with his research team. The team mainly conducts basic scientific research based on the strong research testing and analysis platform and the pilot-scale industrialization testing platform provided by IOP and TIES. Guided by such research and supported by the frontier technology consultation and investment services from IOPLY, it is expected to complete the industrialization of scientific research results and pilot-scale testing of key materials.

Wu Fan's Research Group

Established on the Institute of Physics, Academia Sinica founded in 1928 and the Institute of Physics, National Academy of Peiping founded in 1929, the Institute of Physics (IOP), Chinese Academy of Sciences (CAS) is a comprehensive multidisciplinary research organization with a significant influence in the domestic and international physics communities. It is mainly engaged in research on condensed matter physics, with research interests covering condensed matter physics, optical physics, atomic and molecular physics, plasma physics, soft matter and biological physics, condensed matter theories, computational physics and clean energy. IOP's Nanoionics and Energy Materials Research Group has been researching secondary batteries for 40 years. In 1996, the research group became the pioneer of Chinese research on the industrialization of lithium-ion batteries. Meanwhile, it chaired and conducted many key projects supported by CAS and the Ministry of Science and Technology of the People’s Republic of China. In 2018, the Yangtze River Delta Physics Research Center of the Institute of Physics, Chinese Academy of Sciences (hereinafter referred to as IOPLY) was jointly established by IOP and the People's Government of Liyang City, Jiangsu Province. Making the transfer and transformation of scientific and technological achievements and cutting-edge technology R&D the main targets, IOPLY is dedicated to meeting the demand of enterprises in East China for key technologies in energy, IT, sophisticated instruments, and intelligent equipment. It will also build itself into a world-renowned science and technology innovation and academic exchange base.

Wu Fan, a distinguished researcher from IOP, has settled in IOPLY with his research team. The team mainly conducts basic scientific research based on the strong research testing and analysis platform and the pilot-scale industrialization testing platform provided by IOP and TIES. Guided by such research and supported by the frontier technology consultation and investment services from IOPLY, it is expected to complete the industrialization of scientific research results and pilot-scale testing of key materials.



Research field

· R&D of high-energy-density lithium (ion) battery materials and cells

· R&D of all-solid/solid-state lithium (ion) battery materials and cells

· Treatment for anode/cathode materials and solid electrolyte interface;

· Analysis for failure of lithium battery;

· Characterization and analysis of advanced materials;

· Industrialization of all-solid-state batteries and solid-state electrolytes.



Patents

Chinese Invention Patents: 26

American Invention Patents: 3

PCT/International Invention Patents: 3


Papers

“*”Corresponding  author ; “#”Co-first author


2022


Solid state ionics - selected topics and new directions 

F. Wu, L. Liu, S. Wang, J. Xu, P. Lu, W. Yan, J. Peng, D. Wu, H. Li*

Progress in Materials Science (IF=48.165), 2022, 126,100921.

https://doi.org/10.1016/j.pmatsci.2022.100921


Progress in Solvent-Free Dry-Film Technology for Batteries and Supercapacitors

Y. Li, Y. Wu, Z. Wang, J. Xu, T. Ma, L. Chen, H. Li*, F. Wu*

Materials Today (IF=31.041), 2022, 55,92-109.

https://doi.org/10.1016/j.mattod.2022.04.008


Long-Life Lithium-Metal All-Solid-State Batteries and Stable Li Plating Enabled by In-situ Formation of Li3PS4  in SEI Layer

J. Xu, J. Li, Y. Li, M. Yang, L. Chen, H. Li, F. Wu*

Advanced Materials(IF=32.086), 2022, in press.

DOI:10.1002/adma.202203281


Air Stability of Sulfide Solid-state Batteries and Electrolytes

P. Lu#, D. Wu#, L. Chen, H. Li*, F. Wu*

Electrochemical Energy Reviews (IF=32.804), 2022, accepted.


Improving Thermal Stability of Sulfide Solid Electrolytes: An Intrinsic Theoretical Paradigm

S. Wang, Y. Wu, H. Li, L. Chen, F. Wu*

Infomat(IF=25.405)2022, 212316.

Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm - Wang - - InfoMat - Wiley Online Library


Interfacial and Cycle Stability of Sulfide All-Solid-State Batteries with Ni-Rich Layered Oxide Cathodes

J. Wang, Z. Zhang, J. Han, X. Wang, L. Chen, H. Li, F. Wu*

Nano Energy (IF=19.069), 2022, 107528.

Interfacial and Cycle Stability of Sulfide All-Solid-State Batteries with Ni-Rich Layered Oxide Cathodes - ScienceDirect


Doping Strategy and Mechanism for Oxide and Sulfide Solid Electrolytes with High Ionic Conductivity

Y. Wang, Y. Wu, Z. Wang, L. Chen, H. Li*, F. Wu*

Journal of Materials Chemistry A (IF=14.511), 2022, 10, 4517 - 4532


Air/water Stability Problems and Solutions for Lithium Batteries

M. Yang, L. Chen, H. Li*, F. Wu*

Energy Materials Advances2022, accepted.


Stable Ni-rich layered oxide cathode for sulfide all-solid-state lithium battery

Y. Wang, Z. Wang, D. Wu, Q. Niu, P. Lu, T. Ma, Y. Su, L. Chen, H. Li, F. Wu*

eScience2022, accepted.

Stable Ni-rich layered oxide cathode for sulfide all-solid-state lithium battery - ScienceDirect


Progress in Lithium Thioborate Superionic Conductors

X. Zhu, Z. Zhang, L. Chen, H. Li. Fan Wu*

Journal of Materials Research (invited paper), 2022, accepted.

https://doi.org/10.1557/s43578-022-00592-4


Liquid-phase Synthesis of Li2S and Li3PS4 with Lithium-based Organic Solutions

J. Xu, Q. Wang, W. Yan, L. Chen, H. Li. F. Wu*

Chinese Physics B2022, accepted.

Liquid-phase Synthesis of Li2S and Li3PS4 with Lithium-based Organic Solutions - IOPscience



2021

Superior all-solid-state batteries enabled by gas-phase synthesized sulfide electrolyte with ultra-high moisture stability and ionic conductivity. 

P. Lu, L. Liu, S. Wang, J. Xu, J. Peng, W. Yan, Q. Wang, H. Li, L. Chen, F. Wu*. 

Advanced Materials(IF=32.086), 2021, 2100921.

https://doi.org/10.1002/adma.202100921


Water-Stable Sulfide Solid Electrolyte Membranes Directly Applicable in All-Solid-State Batteries Enabled by Superhydrophobic Li+-conducting Protection Layer

J. Xu, Y. Li, P. Lu, W. Yan, H. Li, L. Chen, F. Wu*. 

Advanced Energy Materials(IF=29.698), 2021, 2102348.

Water‐Stable Sulfide Solid Electrolyte Membranes Directly Applicable in All‐Solid‐State Batteries Enabled by Superhydrophobic Li+‐Conducting Protection Layer - Xu - - Advanced Energy Materials - Wiley Online Library


High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendrite-Free Liquid Lithium Anode

J. Peng, D. Wu, F. Song, S. Wang, Q. Niu, J. Xu, P. Lu, H. Li, L. Chen, F. Wu*. 

Advanced Functional Materials(IF=19.924), 2021, 2105776.

High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendrite‐Free Liquid Lithium Anode


5V-Class Sulfurized Spinel Cathode Stable in Sulfide All-Solid-State Batteries

Y. Wang, Y. Lv, Y. Su, L. Chen, H. Li, F. Wu*. 

Nano Energy (IF=19.069), 2021, 90,106589.

https://doi.org/10.1016/j.nanoen.2021.106589


Progress in Thermal Stability of All-Solid-State-Li-Ion-Batteries

Y. Wu#, S. Wang#, H. Li, L. Chen, F. Wu*.

Infomat(IF=25.405), 2021, 1-27 (Cover Image)

https://doi.org/10.1002/inf2.12224


Application of Si-based Anodes In Sulfide Solid-State Batteries. 

W. Yan, F. Wu*, H. Li, L. Chen.

Energy Storage Science and Technology, 2021, 10(3): 821-835.

Application of Si-based anodes in sulfide solid-state batteries (energystorage-journal.com)


Before 2021


Advanced sulfide solid electrolyte by core-shell structural design

F. Wu #, W. Fitzhugh #, L. Ye, J. Ning, X. Li *

Nature Communications, (2018) 9:4037.

Advanced sulfide solid electrolyte by core-shell structural design | Nature Communications


A high‐throughput search for functionally stable interfaces in sulfide solid‐state lithium ion conductors

W. Fitzhugh #, F. Wu #, L. Ye, W. Deng, P. Qi, X. Li *

Advanced Energy Materials, 1900807.

A High‐Throughput Search for Functionally Stable Interfaces in Sulfide Solid‐State Lithium Ion Conductors - Fitzhugh - 2019 - Advanced Energy Materials - Wiley Online Library


Strain‐stabilized ceramic‐sulfide electrolytes.

W. Fitzhugh #, F. Wu #, L. Ye #, H. Su, X. Li *

Small, 1901470.

Strain‐Stabilized Ceramic‐Sulfide Electrolytes - Fitzhugh - 2019 - Small - Wiley Online Library


Practical evaluation of energy densities for sulfide solid-state batteries

L. Liu #, J. Xu #, S. Wang, F. Wu *, H. Li *, L. Chen

eTransportation, 2019, 1: 100010.

Practical evaluation of energy densities for sulfide solid-state batteries - ScienceDirect


Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes and all-solid-state batteries

J. Xu, L. Liu, N. Yao, F. Wu *, H. Li *, L. Chen

Materials Today Nano, 2019: 100048. 

Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries - ScienceDirect


Advances in Electrochemical Stability of Sulfide Solid-state Electrolyte

Liu, Lilu, Fan Wu, Hong Li, and Liquan Chen.

Journal of the Chinese Ceramic Society  2019, 47: 1367–1385. 


In-situ synthesis and defect evolution of single-crystal piezoelectric nanoparticles

F. Wu *, N. Yao *

Nano Energy 28 (2016) 195–205.


Advances in windowed gas cells for in-situ TEM studies

F.Wu *, N. Yao *

Nano Energy, 2015, 13, 735-756. 


Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery

F. Wu *, N. Yao 

Nano Energy, 2015, 11, 196-210.


Tuning exchange bias in epitaxial Ni/MgO/TiN heterostructures integrated on Si(100). 

F.Wu *, SS Rao, JT Prater, J. Narayan 

Current Opinion in Solid State and Materials Science, 2014, 18 (5), 279-285.


Macroscopic twinning strain in nanocrystalline Cu. 

F. Wu, Y.T. Zhu *, J. Narayan *

Materials Research letters, 2013, 2 (2), 63-69.


Nanoscale electrical properties of epitaxial Cu3Ge film

F. Wu *, W.Cai, N. Yao 

Scientific Reports, 2016, 6, 28818. 


Energy scavenging based on a single-crystal PMN-PT nanobelt 

F. Wu *, W. Cai, Y. Yeh, S. Xu, N. Yao *

Scientific Reports, 2016, 6, 22513. 


Controlled epitaxial growth of bcc and fcc Cu on MgO for integration on Si 

F. Wu *, J. Narayan

Crystal Growth & Design, 2013, 13 (11), 5018–5024.

PMN-PT nanostructures for energy scavenging 

 F. Wu *, N. Yao *

Semiconductor Science and Technology, 2017. 32 (6), 063001.

Work function of Cu3Ge thin film

F. Wu *, N. Yao *

Microscopy and Microanalysis 2016, 22 (S3), 1654-1655.

Fabrication of epitaxial Cu3Ge on sapphire with controlled crystallinity and planar defects

F. Wu *, J.K. Zheng, W. Cai, N. Yao *, Y.T. Zhu, J. Narayan

Journal of Alloys and Compounds, 2015, 641, 238-243.

Twin intersection mechanisms in nanocrystalline fcc metals

F. Wu, H.M. Wen, E.J. Lavernia, J. Narayan *, Y.T. Zhu

Materials Science and Engineering: A, 2013, 585 (0), 292-296.

Grain size effect on twin density in as-deposited nanocrystalline Cu film

F. Wu *, Y.T. Zhu, J. Narayan

Philosophical Magazine, 2013, 93 (35), 4355-4363.

Nanoelectronics and Materials Development, ISBN 978-953-51-4734-3, Book edited by Dr. Abhijit Kar

F. Wu *, N. Yao 

publisher: INTECH. 

Microscopy and Analysis, ISBN 978-953-51-4723-7, Book edited by: Stefan Stanciu

F. Wu *, N. Yao *

publisher: INTECH. 

Reversible flat to rippling phase transition in fe containing layered battery electrode materials

X. Chen, S. Hwang, R. Chisnell, Y. Wang, F. Wu, S. Kim, J. W. Lynn, D. Su, and  X. Li *

Advanced Functional Materials, 2018, 1803896

Defects in thin-film heterostructured materials (invited review)

F. Wu

Nanoscience & Nanotechnology-Asia, 2018, Accepted.

A combination of theory and experiment achieving rational design of electrocatalysts for water reduction on hierarchically porous CoS2 microsphere. 

A. Wang, M. Zhang, H. Li, F. Wu, K. Yan and J. Xiao *

Under review.

A novel dual phase membrane 40 wt% Nd0.6Sr0.4CoO3−δ 60 wt%Ce0.9Nd0.1O2−δ: design, synthesis and properties

H. Yuan, S. Lei, F. Wu, S. Wang, D. Yan, P. Liu, Man-Rong Li, J. Caro *and H. Luo  *

Journal of Materials Chemistry A, 2017, 6 (1), 84-92.

In situ preparation of metal halide perovskite nanocrystal thin films for improved light-emitting devices

L. Zhao, Y.W. Yeh, N. L. Tran, F. Wu, Z. Xiao, R.A. Kerner, Y.H. L. Lin, G.D. Scholes, N. Yao, B.P. Rand *

ACS Nano, 2017.11(4), 3957.

Photoluminescence of functionalized germanium nanocrystals embedded in arsenic sulfide glass

Gu, J. Gao, E. Ostroumov, H. Jeong, F. Wu, R. Fardel, N. Yao, R.D. Priestley, G.D. Scholes, Yueh-Lin Loo and C.B. Arnold *

ACS Appl. Mater. Interfaces, 20170509, online

Anisotropic crystallization in solution processed chalcogenide thin film by linearly polarized laser

T. Gu, H. Jeong, K. Yang, F. Wu.

Applied Physics Letters, 2017, 110 (4), 041904

Atomic scale visualization of quantum interference on a weyl semimetal surface by scanning tunneling microscopy

Zheng, S.-Y. Xu, G. Bian, C. Guo, G. Chang, D. S. Sanchez, I. Belopolski, C.-C. Lee, S.-M. Huang, X. Zhang, R. Sankar, N. Alidoust, T.-R. Chang, F. Wu, T. Neupert, F. Chou, H. -T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin, M. Z. Hasan*.

ACS Nano, 2016, 10 (1), 1378.

Ferromagnetic oxide heterostructures on silicon 

S.S. Rao*, J. T. Prater, F. Wuand, J. Narayan

MRS Communications, 2016, 6, 234–240

Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films

Jin, S. Nori, Y.F. Lee, D. Kumar, F. Wu, J. T. Prater, K.W. Kim, and J. Narayan *

Journal of Applied Physics, 2015, 118, (16), 165309.

The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping

Zhao, F. Wu, C. X. Kronawitter, Z. Chen, N. Yao and B. E. Koel *

Physical Chemistry Chemical Physics, 2015, 17, (40), 26797-26803.

Complete vertical M-H loop shift in La0.7Sr0.3MnO3/SrRuO3 thin film heterostructures

S. S. Rao *, F. Wu, J. T. Prater1 and  J. Narayan 

Journal of Applied Physics, 2015, 117, 17B711.

Dependence of semiconductor to metal transition of VO2(011) /NiO{100} /MgO{100} /TiN{100} /Si{100} heterostructures on thin film epitaxy and nature of strain

M. R. Bayati *, R. Molaei, F. Wu, J. Narayan, S. Yarmolenko

Journal of the American Ceramic Society, 2015, 98, (4), 1201-1208.

Positive exchange bias in epitaxial permalloy/MgO integrated with Si (100) 

S. S. Rao *, J.T. Prater, F. Wu, S. Nori, D. Kumar, L. Yue, S.-H. Liou, J. Narayan 

Current Opinion in Solid State and Materials Science, 2014, 18 (3), 140.

Magnetic properties of BaTiO3/La0.7Sr0.3MnO3 thin films integrated on Si (100)

S.S. Rao *, F. Wu, JT Prater, J. Narayan

Journal of Applied Physics, 2014, 116 (22), 224104.

Modification of properties of yttria stabilized zirconia epitaxial thin films by excimer laser annealing

M.R. Bayati *, R. Molaei, A. Richmond, S. Nori, F. Wu, D. Kumar, J. Narayan*, J. G. Reynolds, C.L. Reynolds, Jr.

ACS Applied Materials & Interfaces, 2014, 6 (24), 22316-22325.

Dependence of Semiconductor to Metal Transition of VO2(011) /NiO{100} /MgO{100} /TiN{100} /Si{100} Heterostructures on Thin Film Epitaxy and Nature of Strain 

M.R. Bayati *, R. Molaei, F. Wu, J.Narayan, S.Yarmolenko

Journal of the American Ceramic Society, 2015, 98, (4), 1201-1208. 

A microstructural approach toward the effect of thickness on semiconductor-to-metal transition characteristics of VO2 epilayers

R. Molaei *, M. R. Bayati, F. Wu, J. Narayan

Journal of Applied Physics, 2014, 115, 164311.

Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition

S. Gbordzoe *, R. Kotoka, E. Craven, D. Kumar, F. Wu, J. Narayan

Journal of Applied Physics, 2014, 116, 064310.

Oxygen vacancy enhanced room temperature ferromagnetism in Sr3SnO/c-YSZ/Si (001) heterostructures

Y. Lee *, F. Wu, J. Narayan, J. Schwartz

MRS Communications, 2014, 4 (01), 7-13.

Evidence for topological surface states in epitaxial Bi2Se3 thin film grown by pulsed laser deposition through magneto-transport measurements

Y. Lee *, S. Punugupati, F. Wu, Z. Jin, J. Narayan, J. Schwartz

Current Opinion in Solid State and Materials Science, 2014, 18, (5), 279-285.

Interface magnetism in epitaxial BiFeO3-La0.7Sr0.3MnO3 heterostructures integrated on Si (100)

S.S. Rao *, J.T. Prater, F. Wu, C. T. Shelton, J.-P. Maria and J. Narayan

Nano Letters, 2013, 13 (12), 5814-5821.

Integration of epitaxial permalloy on Si (100) through domain matching epitaxy paradigm

S.S. Rao *, J.T. Prater, F. Wu, S. Nori, D. Kumar, J. Narayan

Current Opinion in Solid State and Materials Science, 2013, 18 (1), 1–5.

Epitaxial integration of topological insulator SrSnO with c-YSZ/Si(001)

Y. F. Lee *, F. Wu, R. Kumar, F. Hunte, J. Schwartz and J. Narayan

Applied Physics Letters, 2013, 103(11), 112101.

Correlation between structure and semiconductor to metal transition characteristics of VO2/TiO2/sapphire thin film heterostructures

M.R. Bayati *,R. Molaei, F. Wu, J.D. Budai, Y. Liu, R.J. Narayan, J. Narayan

Acta Materialia, 2013, 61(20), 7805-7815.

Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications

Gupta, R. Singh *, F. Wu , J. Narayan , C. McMillen , G.F. Alapatt , K.F. Poole, S.-J. Hwu , D. Sulejmanovic , M. Young , G. Teeter and H. S. Ullal

Journal of Materials Research, 2013, 28 (13), 1740-1746.

Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH2)2–2LiH system with NaOH additive

C. Liang, Y. Liu*, Z. Wei, Y. Jiang, F. Wu, M. Gao, H. Pan

International Journal of Hydrogen Energy, 2011, 36 (3), 2137-2144.

Phase-structure and hydrogen storage behaviors of Mg+10% Ni2P composite prepared by reactive ball-milling

Peng, X. Xiao, Z. Hang, F. Wu, C. Li, S. Li, L. Chen  *

Rare Metal Materials and Engineering, 2011, 40 (8), 1387-1391.

Ultrafine SnO2 dispersed carbon matrix composites derived by a sol–gel method as anode materials for lithium ion batteries

M. Gao, X. Chen, H. Pan *, L. Xiang, F. Wu, Y. Liu

Electrochimica Acta, 2010, 55, 9067.


微信图片_20201126133539

Wu Fan is a doctoral supervisor and distinguished researcher supported by the BR Program of the Institute of Physics (IOP), Chinese Academy of Science (CAS). He is also Director of the Scientist Lab Management Department of IOP's IOPLY, Deputy Director of the Frontier Technology Center, TIES and Director of the International Cooperation Department.

He received his bachelor's degree in Materials Science from Zhejiang University in 2011 and a doctor's degree in Materials Science from North Carolina State University in 2014. Later, he did postdoctoral research at Princeton University from 2014 to 2016 and served as a postdoctoral research scientist at Harvard University from 2016 to 2018. He mainly researches Advanced Energy Materials (both energy storage and energy conversion covered), and his research will be applied to lithium-ion batteries, all-solid-state lithium metal batteries, and piezoelectric sensors. He officially joined the Key Laboratory For Renewable Energy, IOP, CAS, which is based in Beijing, in January 2019. He has set up scientist labs in both IOPLY, Institute of Physics, Chinese Academy of Sciences (Liyang, Jiangsu) and TIES (Liyang, Jiangsu). His current main research interests are Basic Science and Industrial Application Research on All-solid-state Batteries and Solid-state Electrolytes. Up to December 2019, he had published 50 SCI papers in high-level international journals and two monographs. His patent applications included three US, six Chinese and two international patents for scientific and technological inventions. He was invited to deliver more than 20 academic presentations at international academic conferences, and well-known universities and research institutions. He is the planning editor of the Nanoscience & Nanotechnology-Asia (Bentham Science Publishers), a guest editor of Acta Physica Sinica's special issue on solid-state batteries, and an editorial board member of the Composite Materials Research, a journal of PiscoMed Publishing Pte Ltd and Data in Brief, a journal of Elsevier. He chaired and implemented one project funded by the General Program of the National Natural Science Foundation of China, one project of the General Program of the Beijing Municipal Natural Science Foundation, one research project funded by the CAS Hundred Talents Program, one research project under a scientist lab of TIES and one horizontal cooperation project. As a project leader, he participated in one project of the Key Program of the National Natural Science Foundation of China and one new R&D institution project of Jiangsu Province.

 

20210206_1612598958628 (1).jpg

牛全海,TIES研发工程师。曾就职于中科院青岛生物能源与过程研究所,有多年锂电池相关研究开发经验。


20210120_1611108206238.jpg

王志轩,中国科学院物理研究所及天目湖先进储能技术研究院博士后。2021年12月获上海大学工学博士学位,博士导师为赵兵研究员。硕博期间先后从事了锂离子电池负极材料、液态锂金属电池和硫化物固态锂金属电池方向的研究。擅长锂离子电池负极材料的结构化设计、固液态锂金属电池中的锂金属保护策略、硫化物固态电解质的固液相合成、掺杂改性及电化学稳定性等研究。在Energy Storage Mater., Nano Energy, ACS nano, ACS Appl. Mater. Interfaces, J. Power Sources等材料和电化学领域知名刊物发表 SCI 学术论文 18 篇,其中第一作者及第二作者(导师一作) 8 篇,申请发明专利 8 项,其中2项授权。熟练掌握循环伏安、交流阻抗等电化学表征手段以及多种电化学性能分析方法。熟练掌握X射线光电子能谱(XPS),拉曼光谱仪(Raman)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等设备的操作及数据分析,具有原子层沉积(ALD)、化学气相沉积(CVD)、磁控溅射等设备的操作经验,具有丰富的材料合成及材料表征的经验和能力。

***朔 

王朔,中国科学院物理研究所在读博士生。研究方向:硫化物固态电解质及全固态电池的研发、锂离子电池失效分析。熟悉锂离子电池失效分析中各类表征测试分析,独立或合作完成多组失效分析任务,合作发表学术论文4篇,申请专利1项。

许洁茹

许洁茹,中国科学院物理研究所在读博士生。研究方向:固态电池关键材料及固态电池中的界面问题。熟练掌握各类电解质材料的基本制备方法和改性手段,及其电导率、电化学窗口等表征。熟练掌握电化学表征手段:使用Zahner,Novo control,Solartron、辰华等电化学工作站进行交流阻抗谱,循环伏安法的测试和数据分析。熟练掌握物理化学表征手段:X射线衍射仪(XRD)、扫描电子显微镜(SEM)、二次离子质谱仪(SIMS)、X射线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FTIR)、TG-DSC综合热分析仪等的基本操作和数据分析。

20200131_1580484901439.jpg

彭健,中国科学院物理研究所在读博士生。熟练掌握多种材料合成制备方法,高真空封管系统,多种温区与气氛高温电阻炉,电弧炉,高温高压合成系统,高压反应釜等,熟练掌握物理化学表征手段:X射线衍射仪(XRD),物性综合测量系统(PPMS),磁学测量系统MPMS,X射线能谱仪EDX。

卢普顺

卢普顺,中国科学院物理研究所在读硕博生。熟练掌握硫化物固态电解质的固相法制备,了解材料的基本改性方法,掌握各类表征和测试手段,如X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、电化学工作站(CHI)等。

***秋辰

王秋辰,中国科学院物理研究所在读硕博生。

研究方向:全固态硫化物电池材料。

2019年获中国科学院大学物理学专业学士学位。熟悉使用C语言、Matlab、Gromacs进行分子动力学模拟和***性原理计算。使用扫描隧道显微镜(STM)、透射电子显微镜(TEM)并进行图像处理及数据分析。了解全固态锂硫电池的制作工艺、表征手段、主要技术问题及研究进展等。

 

20200812_1597196180917.jpg

王佳成,英国曼彻斯特大学在读博士生。熟悉二维材料的多种制备方法及三维结构的搭建。擅长开发适用于直写式3D打印的材料和材料流变学性质的研究。有超级电容器的锂离子电池的研究经验。熟练掌握X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman spectroscopy)、X射线光电子能谱仪(XPS)、原子力显微镜(AFM)、流变仪、BET比表面积、动态光散射(DLS)、ZETA电位、四探针电阻测试仪、接触角测量仪、电化学工作站等仪器的操作和数据分析。

闫汶琳

闫汶琳,中国科学院物理研究所在读硕士

研究方向:锂(离子)电池硫化物固态电解质。

2019年获南开大学材料化学专业学士学位,掌握了一定的材料学相关的基础知识,本科主要研究钠离子电池碳基负极材料。掌握多种材料制备的基本方法,了解材料改性的常用手段。熟练使用电化学工作站对电池进行充放电测试,了解多种物理化学表征手段:x射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等。

20200212_1581508506984.png

王玥,中国科学技术大学与天目湖先进储能技术研究院联合培养硕士研究生,研究方向为硫化物固态电解质及其全固态电池,会使用Origin、Jade、Photoshop、AutoCAD等制图软件,熟悉XRD、SEM、TEM、电化学性能测试等检测分析手段,能简单操作蓝电测试仪、电化学工作站等。



李永兴

李永兴,国科学技术大学在读研究生。熟练掌握硫化物固态电解质的制备方法和基本改性方法,能够使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等仪器对材料进行表征和分析。

宋凤梅

宋凤梅,中国科学技术大学在读研究生。熟练掌握硫化物固态电解质的制备方法和基本改性方法,能够使用偏光显微镜(POM),红外光谱仪(IR),X射线衍射(XRD),扫描电子显微镜(SEM)等仪器对材料进行表征和分析。

20200714_1594726848936.jpg

王雪,淮北师范大学化学与材料科学学院2015级材料化学专业学士。本科期间系统地学习了无机、分析、有机、物化等化学专业基础课程以及材料化学、材料物理、材料性能学等课程,在学业上取得了一定的成绩,其中2017-2018学年获得过淮北师范大学奖学金一等奖、淮北师范大学三好学生等荣誉称号。大一下学期过了四级(522分),大二上学期过了英语六级(511分),大三获得了国家计算机二级证书和安徽省化学竞赛三等奖。2018年5月17日成为正式党员。2017年10月初,进入杨进老师的实验室,开始做毕业设计,进行金属有机化学中关于氮杂环卡宾化合物的相关实验研究。2019年考取中国科学技术大学苏州研究院纳米学院研究生。


20200731_1596201458819.jpg

吴钰婧,中国科学院物理研究所在读硕士生。2020年获华东师范大学物理专业学士学位,掌握固体物理等相关知识。了解多种物理化学表征手段:X射线衍射(XRD),扫描电子显微镜(SEM)等。

20200731_1596202840062.jpg

伍登旭,北京理工大学化学专业2017级本科生。本科期间掌握了一定的材料和化学基础知识,会使用Origin、ChemDraw、Gaussian、adobe PS、adobe PR等软件,基本了解各类表征测试手段,能够组装扣式电池及操作蓝电测试仪。

20210406_1617680941970.png

杨明,中国科学技术大学在读硕士生。掌握四大化学以及材料化学等相关的基础知识,了解多种正极材料硫化物全固态电池的性能,熟练掌握各种办公软件,会使用Origin等制图软件,了解多种表征和测试手段:X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电化学工作站(CHI)等。

20210406_1617682174302.jpg

高起发,中国科学技术大学在读研究生。系统学习了材料科学基础、材料化学等基础知识,熟悉锂离子电池正负极活性物质,掌握多种材料制备方法,了解材料改性及表征的常用手段。

20210406_1617682559476.jpg

马腾欢,中国科学技术大学在读研究生。2019年获中国矿业大学能源化学工程专业学士学位,熟练掌握硫化物固态电池正负极界面问题和基本改性方法,了解多种表征测试手段:X射线衍射仪(XRD)、扫描电子显微镜(SEM)等。

20210406_1617685772512.jpg

朱祥,中国科学技术大学在读研究生。本科毕业于淮北师范大学,学习过材料科学基础、材料分析测试方法等,了解的表征测试方法有X射线衍射(XRD)、扫描电子显微镜(SEM)。



团队综合了中科院物理所纳米离子学与能源材料课题组、天目湖先进储能技术研究院以及中科院物理所长三角研究***吴凡科学家工作室的资源优势,可为基础科研及产业化发展提供强有力的硬件支撑。


仪器设备:

中科院物理所纳米离子学与能源材料课题组:中科院物理所纳米离子学与能源材料课题组从事二次电池的研究已逾40年,并于1996年在国内率先开始锂离子电池产业化研究,主持并承担多项中科院、科技部***项目。依托于中国科学院纳米先导科技专项,已建成“互联互通惰性气氛材料综合测试平台”,占地面积200平方米。该平台通过手套箱及真空样品转移盒,可实现样品在测试全过程中不接触空气,保证测试准确性。目前的设备已有X射线衍射仪(XRD,支持原位测试)、光学显微镜、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、UPLC/APGC/Q-ToF,***液相色谱/气相色谱/四级杆-飞行时间质谱联用系统、二次离子质谱(SIMS)、色谱质谱联用系统(GC-MS)、红外(FTIR)、拉曼光谱(Raman)、TG-DTA-DSC-MS综合分析仪1套、比表面分析仪、绝热加速量热仪(ARC)、原子力显微镜(AFM)、纳米CT、微米CT以及各类电化学表征设备;同时,借助物理所其他公共测试平台资源,可测试透射电子显微镜(TEM)、球差校正透射电子显微镜(STEM)等,此外,中科院物理所固态离子学实验室具有丰富的利用世界大型实验装置(同步辐射光源、散裂中子源等)进行科学研究的经验和充足的合作资源。中科院物理所固态离子学课题组也是上海同步辐射光源的***用户。

天目湖先进储能技术研究院:研究院设有测试分析***、失效分析***和工艺工程***三个技术服务部门。测试分析***拥有大型精密测试设备50余台套,包括俄歇电子能谱仪(AES)、飞行时间二次离子质谱(ToF-SIMS)、X射线光电子能谱(XPS)、场发射透射电子显微镜(TEM)、场发射扫描电子显微镜(SEM)、扫描探针显微镜(SPM)、X射线计算机断层扫描成像设备(CT)、多功能X射线粉末衍射仪(XRD,支持原位测试)、核磁共振谱仪(NMR)、激光显微拉曼光谱仪(Raman)、真空型傅里叶红外光谱仪(FTIR)、红外显微镜等。针对锂离子电池材料对空气敏感的特点,还特地为很多测试设备专门配备了真空/惰性气氛转移装置,以保证在测试过程中样品不会因为接触空气而损坏。失效分析***具备互联互通惰性气氛材料综合测试条件,即通过13台四工位手套箱互连互通,内置原子力显微镜(AFM)、离子束切割仪、红外光谱仪(FTIR)、热重分析仪(TG)、光学显微镜-充放电仪系统等设备,可满足硫化物材料全程不接触空气、原位表征测试的要求。工艺工程***在电池线方面,全程干房设计,可实现全程-40℃—-60℃的低***湿度控制。具备软包小试线、中试线以及方形铝壳中试线,能满足高能量密度、高功率密度锂离子电池、混合固液电解质锂离子电池、金属锂电池、固态和全固态锂离子电池等的研究开发,可为全固态电池开发与性能验证提供支撑。


本实验室拥有手套箱、液相合成-湿法涂覆定制手套箱、球磨机、高温炉、管式炉、热压机、小型混料机、小型涂覆机、小型辊压机、高低温试验箱、电化学工作站、X射线衍射仪(XPS)、X射线光电子能谱仪(XPS)、场发射扫描电子显微镜(FE-SEM)、离子束切割抛光镀膜系统、红外光谱仪(FT-IR)等仪器,可开展惰性气氛下硫化物固态电解质材料制备、空气稳定的硫化物固态电解质制备、正极材料包覆(10-50nm)硫化物固态电解质材料、湿法涂覆制备硫化物固态电解质膜及其复合电极膜、硫化物空气稳定性分析表征、硫化物全固态电池制备等。


1、固相合成材料

图片1.JPG图片2.JPG1图片3.JPG

手套箱:内置高温炉、烘箱、全固态电池压机等,用于固相合成材料及干法制备全固态电池

行星球磨机:用于固相合成材料

马弗炉:克级、公斤级马弗炉,用于材料热处理

管式炉:用于不同气氛中材料制备


2、液相合成、湿法涂覆

图片4.JPG图片5.JPG图片6.JPG图片7.JPG

定制手套箱:内置多通道加热搅拌器、离心机、真空烘箱、小型砂磨机、小型混料机、小型涂覆机、全固态电池压机等,用于液相合成硫化物固态电解质材料及湿法涂覆硫化物固态电解质及其复合正极膜

脱泡搅拌机:转速可达2000r/min,多种程序设定,用于制备电解质、电极浆料

小型涂覆机:可置于手套箱内,涂覆厚度可调,控制精度0.1um,自带红外加热功能

加热型辊压机:***高温度200 oC,用于热辊电解质膜、复合极片

图片8.JPG图片9.JPG图片10.JPG

热压机:***高温度500 oC,***大压力20t

涡旋振荡器:高频振荡混合溶液或浆料

小型离心机:可置于手套箱内,静音、无震动、高转速(10000r/min)



3、测试表征

图片11.JPG图片12.JPG图片13.JPG图片22图片14.JPG

高低温试验箱:温度范围-70 ~ 150oC,温度精度±1oC

XRD:角度重现性: 0.0001°;角度精度: 0.0001°;2θ角范围:-110°~ 168°;可用于原位充放电测试、高低温变温测试

FE-SEM/EDS:放大倍数20 ~1000k,观测样品形貌和元素分布

离子束抛光镀膜系统:切割极片、电解质层,结合SEM观测截面;固态电解质镀集流体

FE-TEM:点分辨率:0.19nm;线分辨率:0.10nm;放大倍数:TEM模式下:50 ~ 2M×;STEM模式下: 200 ~ 150M×;STEM分辨率:≤0.16nm;

图片15.JPG图片16.JPG图片17.JPG图片18.JPG图片19.JPG


XPS:能量分辨率:Ag3d5/2峰位FWHM < 0.48eV;可在真空或惰性气体环境下从手套箱或其它设备中转移样品,送入分析室进行分析


AFM:高分辨,多模式,自动平台,智能扫描,原位测量


FT-IR:光谱分辨率优于0.06 cm-1;覆盖太赫兹至紫外波段的全光谱范围


电化学工作站:Zahner,恒电位仪:施加电位范围:±15 V,恒电流仪:电流量程:1nA ~ 3A,主机交流阻抗频率范围:10µHz~ 8MHz


充放电仪:具有多种型号,可分别用于测试扣式电池、圆柱电池、软包电池:

1:2019年中国科学院“百人计划”,在研,主持

研究方向:全固态硫化物电池及电解质的基础科学与技术研究

2: 天目湖先进储能技术研究院科学家工作室项目,在研,主持

研究方向:全固态硫化物电池及电解质的产业化技术研究



承担国家和地方科技类项目,领导团队突破关键技术瓶颈,开发成功硫化物基固态电池,实现硫化物基全固态电池的技术孵化,解决重大科学技术问题。目前承担课题有:


项目负责人,主持:

中科院海外杰出人才引进计划研究项目1项;

中科院海外杰出人才引进计划择优支持项目1项;

江苏省重点研发计划重点项目1项;

国家自然科学基金面上项目1项;

北京市自然科学基金面上项目1项;

天目湖先进储能技术研究院科学家工作室研究项目1项;

华为战略前瞻性研发项目1项。


课题负责人:

国家自然科学基金重点研发项目1项

江苏省战略性新兴产业发展专项资金项目1项


(1) 提供不同应用场合的硫化物基固态电解质材料(如高电导率、高空气稳定性、低价等)

材料名称

结构和导电率

材料特效

玻璃-陶瓷相Li2S-P2S5系列(如Li3PS4、Li7P3S11


低价

液相合成;

颗粒尺寸:~50nm

LGPS系列(如Li9.54Si1.74P1.44S11.7Cl0.3


室温离子电导率高;

低价;

LGPS系列(如Li10SnP2S12


新合成路径,成本相对较低

硫银锗矿系列(如Li6PS5Cl)


电压窗口宽;

对金属锂相对稳定;

可同时用于正极和负极

Sample C


空气稳定;

吸水后可以恢复

(2) 提供不同应用场合的硫化物基固态电解质膜硫化物固态电解质溶剂和粘结剂匹配,实现湿法涂覆制备硫化物固态电解质膜,室温离子电导率>10-4S/cm。

image

湿法涂覆制备的硫化物固态电解质膜照片


(3) 提供活性材料包覆硫化物固态电解质方案及材料

image

正极材料包覆硫化物固态电解质SEM对比图及元素分布

(4) 提供全固态电池

image

(5) 提供硫化物固态电池领域新型表征分析设备(自主创新开发)

(6) 固态电池领域合作研发项目